Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Cambridge Prisms: Precision Medicine ; 1, 2023.
Article in English | ProQuest Central | ID: covidwho-20244873

ABSTRACT

Diabetes mellitus is prevalent worldwide and affects 1 in 10 adults. Despite the successful development of glucose-lowering drugs, such as glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter-2 inhibitors recently, the proportion of patients achieving satisfactory glucose control has not risen as expected. The heterogeneity of diabetes determines that a one-size-fits-all strategy is not suitable for people with diabetes. Diabetes is undoubtedly more heterogeneous than the conventional subclassification, such as type 1, type 2, monogenic and gestational diabetes. The recent progress in genetics and epigenetics of diabetes has gradually unveiled the mechanisms underlying the heterogeneity of diabetes, and cluster analysis has shown promising results in the substratification of type 2 diabetes, which accounts for 95% of diabetic patients. More recently, the rapid development of sophisticated glucose monitoring and artificial intelligence technologies further enabled comprehensive consideration of the complex individual genetic and clinical information and might ultimately realize a precision diagnosis and treatment in diabetics.

2.
COVID-19 in Alzheimer's Disease and Dementia ; : 109-122, 2023.
Article in English | Scopus | ID: covidwho-20236197

ABSTRACT

Currently, there are no reliable biomarkers for identifying COVID-19 patients and no definite therapeutics to control this deadly disease. MicroRNAs (miRNA) have been explored in several human diseases for their potential role as biomarkers and their therapeutic potential. However, there is very little information available about the roles of miRNAs in COVID-19 infection. This chapter outlines the recent updates and developments of miRNAs in COVID-19 such as miRNAs as potential biomarkers for COVID-19, the molecular basis of miRNAs in COVID-19 infection, and the use of miRNAs as therapeutics targets for COVID-19. While a few potential miRNAs have been researched for the aforementioned reasons, more research is needed to determine the roles of individual miRNAs in COVID-19 infection. © 2023 Elsevier Inc. All rights reserved.

3.
J Mol Biol ; : 168170, 2023 Jun 03.
Article in English | MEDLINE | ID: covidwho-20231260

ABSTRACT

Argonaute 2 (Ago2) is a key component of the RNA interference (RNAi) pathway, a gene-regulatory system that is present in most eukaryotes. Ago2 uses microRNAs (miRNAs) and small interfering RNAs (siRNAs) for targeting to homologous mRNAs which are then degraded or translationally suppressed. In plants and invertebrates, the RNAi pathway has well-described roles in antiviral defense, but its function in limiting viral infections in mammalian cells is less well understood. Here, we examined the role of Ago2 in replication of the betacoronavirus SARS-CoV-2, the etiologic agent of COVID-19. Microscopic analyses of infected cells revealed that a pool of Ago2 closely associates with viral replication sites and gene ablation studies showed that loss of Ago2 resulted in over 1,000-fold increase in peak viral titers. Replication of the alphacoronavirus 229E was also significantly increased in cells lacking Ago2. The antiviral activity of Ago2 was dependent on both its ability to bind small RNAs and its endonuclease function. Interestingly, in cells lacking Dicer, an upstream component of the RNAi pathway, viral replication was the same as in parental cells. This suggests that the antiviral activity of Ago2 is independent of Dicer processed miRNAs. Deep sequencing of infected cells by other groups identified several SARS-CoV-2-derived small RNAs that bind to Ago2. A mutant virus lacking the most abundant ORF7A-derived viral miRNA was found to be significantly less sensitive to Ago2-mediated restriction. This combined with our findings that endonuclease and small RNA-binding functions of Ago2 are required for its antiviral function, suggests that Ago2-small viral RNA complexes target nascent viral RNA produced at replication sites for cleavage. Further studies are required to elucidate the processing mechanism of the viral small RNAs that are used by Ago2 to limit coronavirus replication.

4.
Cell Therapy: cGMP Facilities and Manufacturing: Second Edition ; : 539-548, 2021.
Article in English | Scopus | ID: covidwho-2323501

ABSTRACT

COVID-19 is caused by infection with the novel coronavirus SARS-CoV2, which in turn precipitates severe acute respiratory distress syndrome (ARDS) due to being associated with a cytokine release syndrome (CRS). Inflammatory endothelialitis is also implicated in disease pathophysiology. Cell-based therapy (CBT) is undergoing testing in numerous mechanistic and pivotal clinical trials due to its known immunomodulatory properties. Culture-expanded mesenchymal stem cells (CD105+ cells) may be safely administered as an allograft and can suppress exuberant immune responses, improve endothelial function, and boost T- and B-cell responses. Early-stage open-label trials have reported potential clinical responses, and pivotal trials have been rapidly initiated. Coupled with the known safety profile, CBT may emerge as a valuable addition to the therapeutic armamentarium for SARS-CoV2. © Springer Nature Switzerland AG 2009, 2022, Corrected Publication 2022.

5.
Clinical Chemistry and Laboratory Medicine: CCLM ; 61(s1):s1568-s1587, 2023.
Article in English | ProQuest Central | ID: covidwho-2312068
6.
Clinical Chemistry and Laboratory Medicine: CCLM ; 61(s1):s5-s7, 2023.
Article in English | ProQuest Central | ID: covidwho-2312045
7.
Noncoding RNA ; 9(2)2023 Apr 18.
Article in English | MEDLINE | ID: covidwho-2301483

ABSTRACT

(1) Background: MicroRNAs are involved in the expression of the gene encoding the chloride channel CFTR (Cystic Fibrosis Transmembrane Conductance Regulator); the objective of this short report is to study the effects of the treatment of bronchial epithelial Calu-3 cells with molecules mimicking the activity of pre-miR-145-5p, pre-miR-335-5p, and pre-miR-101-3p, and to discuss possible translational applications of these molecules in pre-clinical studies focusing on the development of protocols of possible interest in therapy; (2) Methods: CFTR mRNA was quantified by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR). The production of the CFTR protein was assessed by Western blotting; (3) Results: The treatment of Calu-3 cells with agomiR-145-5p caused the highest inhibition of CFTR mRNA accumulation and CFTR production; (4) Conclusions: The treatment of target cells with the agomiR pre-miR-145-5p should be considered when CFTR gene expression should be inhibited in pathological conditions, such as polycystic kidney disease (PKD), some types of cancer, cholera, and SARS-CoV-2 infection.

8.
Coronaviruses ; 2(8) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2288325

ABSTRACT

Background: The new public health emergency of COVID-19 caused by a novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which originated in Wuhan, Hubei province, China in December 2019, evolved into a pandemic in no time and is still in progression. The novel virus mainly targets the lower respiratory system, leading to viral pneumonia, with other associated complications of multi organ failure. Discussion(s): The bats, in particular Rhinolophus affinis, is a natural host of SARS-CoV-2 and the virus is considered to have spread to humans through yet controversial intermediate host pangolins. The incubation period ranges from 2-14 days and mode of person-to-person transmission is primari-ly via the direct contact with the infected person or through the droplets generated by the infected person during coughing or sneezing. The initiation of the infection process by SARS-CoV-2 virus is the invasion of lung type II alveolar cells via a receptor protein called angiotensin-converting enzyme 2 (ACE2) present on the cell membrane with glycosylated spike (S) viral protein that medi-ates host cell invasion. The main diagnostic tools employed are molecular methods based on nucleic acid detection engaging real-time quantitative polymerase chain reaction (RT-qPCR) and a new immunoassays based on antibodies IgM/IgG. Conclusion(s): Due to the lack of specific clinically approved anticovid-19 drugs or vaccines that could be used for its prevention or treatment, the current management approach is essentially sup-portive and symptomatic. The precautionary measures like, social distancing, cleaning hands with soap or sanitizers, using disinfectant solutions to decontaminate the surfaces of things and proper ventilation, wearing masks and other protective gears to curb transmission. The knowledge regard-ing COVID-19 therapies is still evolving and collaborative efforts are being put in to discover definitive therapies on different themes in the form of vaccines, repurposing drugs, RNA interfer-ence, docking studies, etc.Copyright © 2021 Bentham Science Publishers.

9.
Viruses ; 15(3)2023 02 27.
Article in English | MEDLINE | ID: covidwho-2268208

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to global public health. In an effort to develop novel anti-coronavirus therapeutics and achieve prophylactics, we used gene set enrichment analysis (GSEA) for drug screening and identified that Astragalus polysaccharide (PG2), a mixture of polysaccharides purified from Astragalus membranaceus, could effectively reverse COVID-19 signature genes. Further biological assays revealed that PG2 could prevent the fusion of BHK21-expressing wild-type (WT) viral spike (S) protein and Calu-3-expressing ACE2. Additionally, it specifically prevents the binding of recombinant viral S of WT, alpha, and beta strains to ACE2 receptor in our non-cell-based system. In addition, PG2 enhances let-7a, miR-146a, and miR-148b expression levels in the lung epithelial cells. These findings speculate that PG2 has the potential to reduce viral replication in lung and cytokine storm via these PG2-induced miRNAs. Furthermore, macrophage activation is one of the primary issues leading to the complicated condition of COVID-19 patients, and our results revealed that PG2 could regulate the activation of macrophages by promoting the polarization of THP-1-derived macrophages into an anti-inflammatory phenotype. In this study, PG2 stimulated M2 macrophage activation and increased the expression levels of anti-inflammatory cytokines IL-10 and IL-1RN. Additionally, PG2 was recently used to treat patients with severe COVID-19 symptoms by reducing the neutrophil-to-lymphocyte ratio (NLR). Therefore, our data suggest that PG2, a repurposed drug, possesses the potential to prevent WT SARS-CoV-2 S-mediated syncytia formation with the host cells; it also inhibits the binding of S proteins of WT, alpha, and beta strains to the recombinant ACE2 and halts severe COVID-19 development by regulating the polarization of macrophages to M2 cells.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Polysaccharides , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents/pharmacology , Drug Repositioning , MicroRNAs , Polysaccharides/pharmacology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Astragalus propinquus/chemistry
10.
Mol Ther Nucleic Acids ; 29: 219-242, 2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2277793

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.

11.
Latin American Journal of Pharmacy ; 41(11), 2022.
Article in English | Web of Science | ID: covidwho-2243088

ABSTRACT

Baicalin is a kind of extraction from herb, and had treatment effects in some disease, however, it has been unclear that it's effects in preeclampsia (PE). The aim of our work was to evaluate baicalin's effects in PE treatment and relative mechanisms in vivo. Using hypoxia to make PE cell model. First step, using difference baicalin concentration to treat. Next step, transfecting si-miRNA-19a to discuss miRNA-19a's effects in baicalin's treatment to PE. Measuring cell proliferation, apoptosis, invasion and migration by CCK-8, flow cytometer, transwell and wound healing assay. Relative protein and gene expression by WB and RT-qPCR assay. Analysis correlation between miRNA-19a and PTEN by dual-luciferase reporter gene assay. Compared with NC, cell proliferation was significantly depressed with apoptosis significantly increasing and invasion cell number and wound healing rates were significantly down-regulation. miRNA-19a expression was significantly down-regulation, PTEN expression was significantly up-regulation, and p-AKT and p-PI3K expressions were significantly down-regulation. With baicalin supplement, the cell's biological activities including cell proliferation, invasion and migration were significantly up-regulation with miRNA-19a increasing. Meanwhile, PTEN protein expression was significantly depressed and p-AKT and p-PI3K proteins expression were significantly increased (p < 0.001, respectively). By dual-luciferase reporter gene assay, miRNA-19a could target PTEN in cell lines. Baicalin had effects to improve PE with miRNA-19a/PTEN axis in vivo study.

12.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 18.
Article in English | MEDLINE | ID: covidwho-2238830

ABSTRACT

Diseases and infections of the respiratory tract are common global causes of morbidity and mortality. Our study attempts to elucidate a novel remedy for respiratory ailments, in addition to identifying and quantifying the metabolites of Saussurea costus root extract (SCRE) using HPLC. Then, in vitro antiviral and in vivo lung protective effects were elucidated. The in vitro antiviral potential of SCRE was analyzed via plaque assay against the low pathogenic human coronavirus (HCoV-229E) and human influenza virus (H1N1). The value of the half maximal inhibitory concentrations (IC50) of SCRE against HCoV-229E and H1N1 influenza virus were 23.21 ± 1.1 and 47.6 ± 2.3 µg/mL, respectively. SCRE showed a histological improvement, namely a decrease in inducible nitric oxide synthase (iNOS) and caspase-3 immunoexpression in in vivo cyclophosphamide (CP)-induced acute lung injury (ALI). Moreover, there was a considerable decline in microRNA-let-7a gene expression and a significant rise in heme oxygenase-1 (HO-1) gene expression, with a marked decrease in the malondialdehyde (MDA) level. Molecular docking studies revealed that the major constituents of SCRE have a good affinity for caspase-3, HO-1, and iNOS proteins. In conclusion, a traditional plant SCRE could be a promising source of novel therapeutic agents for treating and protecting respiratory tract diseases. More future investigations should be carried out to reveal its efficacy clinically.

13.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2234849

ABSTRACT

The ongoing pandemic of COVID-19 has caused more than 6.7 million tragic deaths, plus, a large percentage of people who survived it present a myriad of chronic symptoms that last for at least 6 months; this has been named as long COVID. Some of the most prevalent are painful symptoms like headache, joint pain, migraine, neuropathic-like pain, fatigue and myalgia. MicroRNAs are small non-coding RNAs that regulate genes, and their involvement in several pathologies has been extensively shown. A deregulation of miRNAs has been observed in patients with COVID-19. The objective of the present systematic review was to show the prevalence of chronic pain-like symptoms of patients with long COVID and based on the expression of miRNAs in patients with COVID-19, and to present a proposal on how they may be involved in the pathogenic mechanisms of chronic pain-like symptoms. A systematic review was carried out in online databases for original articles published between March 2020 to April 2022; the systematic review followed the PRISMA guidelines, and it was registered in PROSPERO with registration number CRD42022318992. A total of 22 articles were included for the evaluation of miRNAs and 20 regarding long COVID; the overall prevalence of pain-like symptoms was around 10 to 87%, plus, the miRNAs that were commonly up and downregulated were miR-21-5p, miR-29a,b,c-3p miR-92a,b-3p, miR-92b-5p, miR-126-3p, miR-150-5p, miR-155-5p, miR-200a, c-3p, miR-320a,b,c,d,e-3p, and miR-451a. The molecular pathways that we hypothesized to be modulated by these miRNAs are the IL-6/STAT3 proinflammatory axis and the compromise of the blood-nerve barrier; these two mechanisms could be associated with the prevalence of fatigue and chronic pain in the long COVID population, plus they could be novel pharmacological targets in order to reduce and prevent these symptoms.


Subject(s)
COVID-19 , Chronic Pain , MicroRNAs , Post-Acute COVID-19 Syndrome , Humans , Chronic Pain/genetics , COVID-19/complications , COVID-19/genetics , MicroRNAs/genetics , Post-Acute COVID-19 Syndrome/genetics
14.
Front Immunol ; 14: 1129766, 2023.
Article in English | MEDLINE | ID: covidwho-2228264

ABSTRACT

Background: Degradation of the endothelial protective glycocalyx layer during COVID-19 infection leads to shedding of major glycocalyx components. These circulating proteins and their degradation products may feedback on immune and endothelial cells and activate molecular signaling cascades in COVID-19 associated microvascular injury. To test this hypothesis, we measured plasma glycocalyx components in patients with SARS-CoV-2 infection of variable disease severity and identified molecular signaling networks activated by glycocalyx components in immune and endothelial cells. Methods: We studied patients with RT-PCR confirmed COVID-19 pneumonia, patients with COVID-19 Acute Respiratory Distress Syndrome (ARDS) and healthy controls (wildtype, n=20 in each group) and measured syndecan-1, heparan sulfate and hyaluronic acid. The in-silico construction of signaling networks was based on RNA sequencing (RNAseq) of mRNA transcripts derived from blood cells and of miRNAs isolated from extracellular vesicles from the identical cohort. Differentially regulated RNAs between groups were identified by gene expression analysis. Both RNAseq data sets were used for network construction of circulating glycosaminoglycans focusing on immune and endothelial cells. Results: Plasma concentrations of glycocalyx components were highest in COVID-19 ARDS. Hyaluronic acid plasma levels in patients admitted with COVID-19 pneumonia who later developed ARDS during hospital treatment (n=8) were significantly higher at hospital admission than in patients with an early recovery. RNAseq identified hyaluronic acid as an upregulator of TLR4 in pneumonia and ARDS. In COVID-19 ARDS, syndecan-1 increased IL-6, which was significantly higher than in pneumonia. In ARDS, hyaluronic acid activated NRP1, a co-receptor of activated VEGFA, which is associated with pulmonary vascular hyperpermeability and interacted with VCAN (upregulated), a proteoglycan important for chemokine communication. Conclusions: Circulating glycocalyx components in COVID-19 have distinct biologic feedback effects on immune and endothelial cells and result in upregulation of key regulatory transcripts leading to further immune activation and more severe systemic inflammation. These consequences are most pronounced during the early hospital phase of COVID-19 before pulmonary failure develops. Elevated levels of circulating glycocalyx components may early identify patients at risk for microvascular injury and ARDS. The timely inhibition of glycocalyx degradation could provide a novel therapeutic approach to prevent the development of ARDS in COVID-19.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Vascular System Injuries , Humans , Glycocalyx/metabolism , Endothelial Cells , Syndecan-1/metabolism , Vascular System Injuries/metabolism , Hyaluronic Acid/metabolism , COVID-19/metabolism , SARS-CoV-2 , Respiratory Distress Syndrome/drug therapy , Gene Expression Profiling
15.
Experimental Biomedical Research ; 6(1):57-76, 2023.
Article in English | ProQuest Central | ID: covidwho-2226644

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak which still continues to affect the general population, has mutated day by day and new variants have emerged. More than 40 variants, usually caused by mutations in the spike (S) protein, have been recorded. Observation of S protein mutations in the development of t herapeutic agents will increase success rates. As we identify the three-dimensional (3D) conformation of viruses, it is more and more possible to work on models for understanding molecular interactions. Development of agents for arrays and 3D sequencing of proteins paves the way for potential therapeutic studies against variants. MicroRNAs (miRNAs) seemingly act as a potentially important group of biomolecules in combating uncontrolled cytokine release. Besides antiviral response, miRNAs promise to be powerful therapeutic agents against infections. Studies have shown that miRNAs are able to inhibit the genome directly by miRNA-based treatments as they are sprecific to the SARS-CoV-2 genome. In order to expose this potential, in silico studies before continuing with lab studies are helpful. In our bioinformatics analysis, we proposed to compare the S protein similarities of Delta and Omicron, two of the most common variants, and to detect miRNAs targeting the S protein. The S proteins and coding sequences were compared between the two variants, and differences were determined. Within our analysis, 105 and 109 miRNAs for the Delta and Omicron variants, respectively, were detected.We believe that our study will be a potential guide for deciding on the miRNAs that may most likely have an effect on the management of the infection caused by both variants.

16.
Microrna ; 2023 Feb 02.
Article in English | MEDLINE | ID: covidwho-2224639

ABSTRACT

MicroRNAs (miRNAs) are short non-coding RNAs that repress or degrade mRNA targets to downregulate genes. In cancer occurrence, the expression of miRNAs is altered. Depending on the involvement of a certain miRNA in the pathogenetic growth of a tumor, It may be up or downregulated. The "oncogenic" action of miRNAs corresponds with upregulation, which leads to tumor proliferation and spread meanwhile the miRNAs that have been downregulated bring tumor-suppressive outcomes. Oncogenes and tumor suppressor genes are among the genes whose expression is under their control, demonstrating that classifying them solely as oncogenes or tumor suppressor genes alone is not only hindering but also incorrect. Apart from basic tumors, miRNAs may be found in nearly all human fluids and can be used for cancer diagnosis as well as clinical outcome prognostics and better response to treatment strategies. The overall variance of these tiny non-coding RNAs influences patient-specific pharmacokinetics and pharmacodynamics of anti-cancer medicines, driving a growing demand for personalized medicine. By now, microRNAs from tumors biopsies or blood are being widely investigated as substantial biomarkers for cancer in time diagnosis, prognosis, and, progression. With the rise of COVID-19, this paper also attempts to study recent research on miRNAs involved with deaths in lung cancer COVID patients. With the discovery of single nucleotide polymorphisms, personalized treatment via microRNAs has lately become a reality. The present review article describes the highlights of recent knowledge of miRNAs in various cancers, with a focus on miRNA translational applications as innovative potential diagnostic and prognostic indicators that expand person-to-person therapy options.

17.
Immunobiology ; 228(2): 152343, 2023 03.
Article in English | MEDLINE | ID: covidwho-2210509

ABSTRACT

INTRODUCTION: It has been demonstrated that the patients with severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) suffer from severe inflammation. Due to the ethnics, the immune responses may be different. Additionally, microRNAs may alter immune responses in the patients. The current study was aimed to evaluate the expression of T helper subsets-related transcription factors, some T helper 17 (Th17) products, and two microRNAs, including miR-155 and miR-194, in the Iranian hospitalized patients. METHODS: In this study, T-box expressed in T cells (T-bet), GATA binding protein 3, The retinoid orphan receptor gamma t (RORγt), forkhead box P3 (FOXP3), interleukin (IL)-17A, IL-8, and CC ligand 20 (CCL20) mRNA levels and, miR-155 and miR-194 levels were evaluated in 70 patients suffered from severe coronavirus disease 2019 (COVID-19) and 70 healthy subjects using Real-Time qPCR technique. RESULTS: The findings showed that RORγt, and FOXP3 mRNA levels were significantly increased, while IL-17A, IL-8, and CCL20 mRNA levels were significantly decreased in the hospitalized SARS-CoV-2 infected patients. Although the levels of miR-155 and miR-194 were not different between groups, miR-194 has negative and positive correlations with RORγt and IL-17A in the Iranian healthy controls. CONCLUSION: This study reports although RORγt was up-regulated, IL-17A, IL-8, and CCL20 mRNA levels were significantly decreased in the hospitalized SARS-CoV-2 infected patients. It may be concluded that up-regulation of FOXP3, via development of T regulatory lymphocytes suppresses Th17 functions and neutralizes Th17 activities. MiR-194 may play crucial roles in regulation of RORγt and IL-17A expression in healthy people, the phenomenon that is disrupted in the severe SARS-CoV-2 infected patients.


Subject(s)
COVID-19 , MicroRNAs , T-Lymphocytes, Regulatory , Th17 Cells , Humans , COVID-19/immunology , COVID-19/metabolism , COVID-19/pathology , Forkhead Transcription Factors/metabolism , Interleukin-17/metabolism , Interleukin-8/metabolism , Iran , MicroRNAs/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , RNA, Messenger/genetics , SARS-CoV-2/genetics
18.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166612, 2023 02.
Article in English | MEDLINE | ID: covidwho-2176723

ABSTRACT

A significant number of SARS-CoV-2-infected individuals naturally overcome viral infection, suggesting the existence of a potent endogenous antiviral mechanism. As an innate defense mechanism, microRNA (miRNA) pathways in mammals have evolved to restrict viruses, besides regulating endogenous mRNAs. In this study, we systematically examined the complete repertoire of human miRNAs for potential binding sites on SARS-CoV-2 Wuhan-Hu-1, Beta, Delta, and Omicron. Human miRNA and viral genome interaction were analyzed using RNAhybrid 2.2 with stringent parameters to identify highly bonafide miRNA targets. Using publicly available data, we filtered for miRNAs expressed in lung epithelial cells/tissue and oral keratinocytes, concentrating on the miRNAs that target SARS-CoV-2 S protein mRNAs. Our results show a significant loss of human miRNA and SARS-CoV-2 interactions in Omicron (130 miRNAs) compared to Wuhan-Hu-1 (271 miRNAs), Beta (279 miRNAs), and Delta (275 miRNAs). In particular, hsa-miR-3150b-3p and hsa-miR-4784 show binding affinity for S protein of Wuhan strain but not Beta, Delta, and Omicron. Loss of miRNA binding sites on N protein was also observed for Omicron. Through Ingenuity Pathway Analysis (IPA), we examined the experimentally validated and highly predicted functional role of these miRNAs. We found that hsa-miR-3150b-3p and hsa-miR-4784 have several experimentally validated or highly predicted target genes in the Toll-like receptor, IL-17, Th1, Th2, interferon, and coronavirus pathogenesis pathways. Focusing on the coronavirus pathogenesis pathway, we found that hsa-miR-3150b-3p and hsa-miR-4784 are highly predicted to target MAPK13. Exploring miRNAs to manipulate viral genome/gene expression can provide a promising strategy with successful outcomes by targeting specific VOCs.


Subject(s)
COVID-19 , MicroRNAs , Humans , Gene Expression Profiling , MicroRNAs/genetics , SARS-CoV-2/genetics
19.
Iran J Med Sci ; 48(1): 26-34, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2205675

ABSTRACT

Background: Non-Hodgkin lymphoma (NHL) is the eleventh leading cause of cancer-related death in the world. Diffuse large B-cell lymphoma (DLBCL) is the most common type of NHL. Up to winter 2021-2022, the death toll caused by the coronavirus disease 2019 (COVID-19) has exceeded 5.6 million worldwide. Possible molecular mechanisms involved in the systemic inflammation, and cytokine storm in COVID-19 patients are still not fully understood. MicroRNA-155 (miR-155) plays a role in the post-transcriptional gene regulation of hematopoiesis, oncogenesis, and inflammation. The present study aimed to evaluate the expression of miR-155 in patients with DLBCL and/or COVID-19. Methods: A cross-sectional study was conducted from July to December 2020 in Tehran (Iran) to evaluate the expression of miR-155 in adult patients diagnosed with DLBCL and/or COVID-19. The real-time polymerase chain reaction technique was used to evaluate the expression of miR-155 in the sera of 92 adults who were either healthy or suffering from DLBCL and/or COVID-19. Relative quantification of gene expression was calculated in terms of cycle threshold (Ct) value. Data were analyzed using SPSS software, and P<0.05 was considered statistically significant. Results: The expression of miR-155 was not associated with the sex or age of the participants. In comparison with healthy individuals (-ΔCt -1.92±0.25), the expression of miR-155 increased in patients with COVID-19 (1.95±0.14), DLBCL (2.25±0.16), or both (4.33±0.65). Conclusion: The expression of miR-155 increased in patients with DLBCL and/or COVID-19.


Subject(s)
COVID-19 , Lymphoma, Large B-Cell, Diffuse , Lymphoma, Non-Hodgkin , MicroRNAs , Adult , Humans , Cross-Sectional Studies , MicroRNAs/genetics , COVID-19/genetics , Iran/epidemiology , Lymphoma, Non-Hodgkin/complications , Lymphoma, Non-Hodgkin/genetics , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology
20.
Journal of Practical Hepatology ; 25(3):335-338, 2022.
Article in Chinese | GIM | ID: covidwho-2155471

ABSTRACT

Objective: The aim of this study was to explore the predictive value of serum microRNAs (miR)-21 and miR-148b for liver histopathological inflammation grading and fibrosis staging in patients with chronic hepatitis B (CHB).

SELECTION OF CITATIONS
SEARCH DETAIL